0040-4039/80/0901-3427802.00/0

Tetrahedron Letters Vol. 21, pp 3427 - 3430 © Pergamon Press Ltd. 1980. Printed in Great Britain

CHEMISTRY OF 2,5-BIS (TRIMETHYLSILOXY) FURANS.¹ II: REACTIONS WITH CARBONYL COMPOUNDS AND THE SYNTHESIS OF 2,6-DIARYL-3,7-DIOXABICYCLO[3.3.0]OCTANE-4,8-DIONES

Peter Brownbridge and Tak-Hang Chan*

Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 2K6.

<u>Abstract</u>: 2,5-Bis(trimethylsiloxy)furan reacted with a number of substituted benzaldehydes under activation of titanium tetrachloride to give 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane-4,8-diones.

Natural lignans with the 2,6-diaryl-3,7-dioxabicyclo[3,3.0]octane structure are fairly well known. Fused bis-ethers² of type 1 were found as constituents in the Chinese drug³ 'shin-i' and in a Nigerian bark extract.⁴ Lactones of type 2 have been shown to be plant germination inhibitors.⁵ Several bis-lactones of structure 3 have been isolated from a cultured mushroom, <u>Inonotus</u> sp. K-1410, and are reported to show interesting biological activities.⁶

Biogenetically, they are all derived from the coupling of two Ar-C₃ units. Recently, a number of syntheses of these compounds have been reported.^{7,8} All have as the critical step the synthesis of the bis-lactones 3. The only method so far available for the synthesis of 3 involves the oxidative coupling of cinnamic acid derivatives with ferric chloride and oxygen⁸ or with thallium trifluoroacetate (TTFA)⁷. However, even with the TTFA method, the yield of 3 was moderate.

It seems to us that an alternative approach to $\frac{3}{2}$ is to start from succinic acid or its equivalents. The ready preparation of 2,5-bis(trimethylsiloxy)furan $\left(\frac{4}{2}\right)^{1}$ from succinic anhydride allows us to examine the construction of $\frac{3}{2}$ from the reaction of 4 with a number of carbonyl compounds.

We were pleased to find that 4 reacted with acetone under activation of titanium tetrachloride to give 5 directly in 72% yield. Compound 5 has mp 104-5°; $v_{max} = 1770 \text{ cm}^{-1} (CH_3CN)$; ¹H nmr $\delta[(CD_3)_2CO] = 1.51 (12 \text{ H,s})$ and 3.63 (2H,s). Presumably the initial reaction product is $\delta(R^1 \approx R^2 = Me)$ which then undergoes lactonization under the reaction conditions to give 5.

A similar product was obtained in the reaction of 4 with <u>i</u>-butanal. The major product, mp 241-3°, v_{max} 1776 cm⁻¹ (CHCl₃), was assigned structure 7. Whilst the stereochemistry of 7 has not been rigorously ascertained, it is assumed to be the all-cis compound from the small $H_A^{-H_B}$ coupling constant (1.5 Hz) in the proton nmr. The all-cis structure is likely the thermodynamically most stable.

The reaction of 4 with benzaldehyde proceeds likewise⁸ to give compound § (70%), mp 181-3°, v_{max} 1780 cm⁻¹ (CHCl₃), whose nmr also indicates the all-cis structure [6 4.03 (2H,s,H_B), 5.87 (2H,s,H_A), 7.38 (10H,s,Ph) in (CD₃)₂CO]. We were surprised to find, however, that if one (rather than 2) mole of TiCl₄ was used to activate the reaction, only 12% of § was formed along with 58% of the trans-product 9. Compound 9, mp 178-180°, v_{max} 1782 cm⁻¹ (CHCl₃) was easily differentiated from 8 by its proton nmr spectrum, which shows different signals for all four aliphatic protons and two differentiated phenyl groups: $\delta[(CD_3)_2CC]$ 3.94 (1H,dd,J 2.5, 10 Hz, H_B), 4.33 (1H,dd, J 8, 10 Hz, H_C), 5.80 (1H,d, J 2.5 Hz, H_A), 6.08 (1H,d, J 8 Jz, H_D). 7.39 (5H,s,Ph) and 7.44 (5H,s,Ph). There are two possible explanations for this behaviour: one is that different intermediat are formed depending on the amount of TiCl₄ present; alternatively the second mole of TiCl₄ might cause isomerization of 9 to the more stable 8 under the reaction conditions.⁹⁰

We have also treated a number of other aromatic aldehydes with 4 and two equivalents of titanium tetrachloride;⁹ the results are presented in the table. As expected, the rate of reaction decreases with increasing electron donation : the aldehyde. This is in contrast to the oxidative routes to $10.^{7,8}$

The ready availability of these aldehydes and bis-siloxyfuran 4 make this reaction a competitive method for the synthesis of the bis-lactone lignans. <u>Acknowledgements</u>: We thank the NSERC of Canada and the Ministry of Education, Government of Quebec, for financial support. We are grateful to Professor A. Pelter (University College, Swansea) for nmr data.

Ar	yield		$mp \bigvee_{\max} (CHCl_3) \qquad \stackrel{1}{H} nmar (\delta in CDCl_3)$					
8				cm 1	HA	н _в	^н с	н _D
4-MeOC ₆ H ₄	10 11	52 _b	153.5-154 ^{a, k}	^{\$} 1775	5.85(s)	3 . 56(s)	-	-
3,4-(MeO)2 ^C 6 ^H 3	10 11	57 _b	208.5–209 ^C	177 7	5.82(s)	3.63(s)	-	-
2,5-(MeO)2 ^C 6 ^H 3	10 ĩĩ	14 ^d 26 ^d	1 79–18 0 157–8	1778 1780	5.83(s) 5.72(d <i>.</i> J 2)	3.61(s) e	- e	- 5-86 (d. J`7-5)
2, 3, 4- (MeO) ₃ C ₆ H ₂	 10 11	36 ^f 29 ^f	138-9 ^{9,k} 146-7	1774 ^h 1777 ^h	5.70(s) 5.61(d,J 2.5	3.70(s)) e	- e	- 5.83(d, <u>J</u> 8)
3,4,5-(MeO) ₃ C ₆ H ₂ (See note 11)	10 11	_ь 37	199.5-200	1786 ⁱ	5.72(d, <u>J</u> 2.	5) ^j e	е	- 5.99(d, <u>J</u> 8) ^j

^alit.⁷ 128-130° ^bsmall amount (<10%) present in reaction mixture was not isolated ^clit.⁸ 207-8° ^dseparated by fractional crystallization from acetone ^eobscured by the MeO-signals ^fseparated by column chromatography on silica gel ^glit.⁷ 133-5° ^hfilm ⁱin CH₃CN ^jin (CD₃)₂CO. ^kWe have kindly been informed by Professor E.C. Taylor that in Table I of reference 7 compounds <u>la</u> and <u>lb</u> were inadvertently interchanged, and that their compound <u>le</u> has the same nmr spectrum as our <u>l0</u> (Ar = 4-MeOC₆H₄).

References and Notes

- 1. Part VII of a series on the Chemistry of enol silyl ethers. For part VI see P. Brownbridge and T.H. Chan, preceeding communication.
- 2. A. Pelter, R.S. Ward, D.J. Watson, P. Murray-Rust and J. Murray-Rust, Tetrahedron Letters, 1509 (1978) and references therein.
- 3. H. Kakisawa, Y.P. Chen and H.Y. Hsu, Phytochemistry, <u>11</u>, 2289 (1972).
- 4. F. Fish and P.G. Waterman, Phytochemical Rep., <u>11</u>, 1527 (1972).
- 5. R. Cooper, E.C. Levy and D. Lavie, J. Chem. Soc. Chem. Commun., 794 (1977)
- Y. Kumada, H. Naganawa, T. Takeuchi, H. Umezawa, K. Yamashita and K. Watanabe, J. Antibiotics, <u>31</u> 105 (1978).
- 7. E.C. Taylor, J.G. Andrade, G.J.H. Rall and A. McKillop, Tetrahedron Letter 3623 (1978).
- A. Pelter, R.S. Ward, D.J. Watson, P. Collins and I.T. Kay, Tetrahedron Letters, 2275 (1979).
- 9. Typical experimental procedure: to a mixture of 1.66 g veratraldehyde and 1.3 g 2,5-bis(trimethylsiloxy)furan in 8 ml dry CH_2Cl_2 under nitrogen at -78°, 1.1 ml titanium tetrachloride was added with vigorous stirring. The dark red mixture was stirred at -78° for 3h then allowed to warm to 0°, poured into aqueous KHCO₃ and extracted with ether. The extracts were dried (MgSO₄), evaporated and the resulting solid (1.60 g) recrystallized from acetonitrile to give colourless needles of 10[Ar = 3,4-(MeO) $_2C_6H_3$] (1.17 g, 57%).
- 10. However, treatment of isolated $\frac{9}{2}$ with excess TiCl₄ does not cause isomerization to $\frac{9}{2}$.
- 11. Reaction of 4 with 2 equiv. of $3,4,5-(MeO)_{3}C_{6}H_{2}CHO$ and 5 equiv. of TiCl₄ gives 12% of $1 \text{ [Ar = } 3,4,5-(MeO)_{3}C_{6}H_{2}$] and 45% of the cis isomer $10 \text{ [Ar = } 3,4,5-(MeO)_{3}C_{6}H_{2}$], mp 193-5° (lit.¹² 195-6°), v_{max} 1784 cm⁻¹, δ (CDCl₃) 3.57 (2H, s, H_B) and 5.86 (2H, s, H_b).
- Y. Kumada, H. Naganawa, T. Takeuchi, H. Umezawa, K. Yamashita and K. Watanabe, J. Antibiotics, <u>31</u>, 105 (1978).

(Received in USA 8 February 1980)